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1. INTRODUCTION

Nowadays, the issues of single-position (active and passive) coordinate determination are still
topical in a wide range of location and navigation problems. As a rule, these methods are im-
plemented based on direct and indirect measurements of bearing, phase differences, Doppler fre-
quencies, relative signal powers, and their derivatives. Also, additional information from various
illumination sources, reflectors (of natural and artificial origin), external control systems, as well
as a priori data on the structure and some parameters of the emitted signal, object speed, the
initial or final point of its route, the presence of barrage and maneuvering areas, etc. are used.
(For example, we refer to the publications [1–33].)

The solution of single-position coordinate determination problems under various types of inter-
ference fits well into the optimal Kalman estimation scheme in a stochastic formulation (as a rule,
with state space expansion) with direct and pseudo measurements [9, 10, 17–26, 30, 36]. In prac-
tice, however, rather simple suboptimal indirect coordinate determination methods with smoothed
measurements are often used for a wide class of problems (e.g., those related to express and post-
processing of trajectory and telemetry data in range command and measurement complexes, real-
time tracking of maneuvering objects, etc. [2, 7, 8, 11]). These methods are based on simple de-
terministic motion models (linear, piecewise linear, polynomial, piecewise polynomial, differential,
piecewise differential, group, piecewise group, and many others), known analytical relationships be-
tween the estimated and measured parameters, and simple procedures for smoothing observations
based on the least squares method (LSM) and its various modifications. Being inferior to optimal
(linear and nonlinear) filtering methods in terms of potential accuracy, they are easy to implement
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in practice in real time under high-quality smoothed measurements. Furthermore, their numeri-
cal implementation causes no problems related to transients, convergence, and strict requirements
for the volume and quality of initial a priori information (which is often characteristic of opti-
mal methods, e.g., when considering the effects of “smearing accuracy” or “rigidity” [9, 32]). For
instance, the complexes mentioned above traditionally involve multistage information processing;
indirect methods are applied therein at the stage of express processing whereas optimal methods
are usually implemented at the stage of post-processing.

Some indirect single-position coordinate determination methods do not use bearing but operate
with periodic pulse radio signals and are oriented to measuring the continuous frequency bias of the
received signal at the observation point due to the movement of either the radiation source or the
observer [3, 7]. The fundamental disadvantage of these methods is the necessity to consider a priori
information about the speed of the object (or that of the source, or that of the observer), which
is often unacceptable in practice. In addition, the coordinate determination problem is limited
to finding the range and heading angle within the uniform rectilinear motion model; hence, it is
impossible to estimate all object location parameters for an arbitrary time instant. An attempt
to eliminate the speed-related limitation was undertaken in [27]; but in this case, it is required to
track the evolution of the Doppler frequency considering the continuous accumulation (counting)
of pulses of the received signal at the observation point. Obviously, the matter concerns only high-
speed objects and severe constraints on observation conditions, and the uniform rectilinear motion
model is also used. The general drawback of the indirect methods discussed in [3, 7, 27] is the
technical complexity of their practical implementation.

There are goniometric Doppler methods for the single-position determination of motion parame-
ters (e.g., see [3, 4, 7, 9, 29]) with direct (radial velocity and bearing) and indirect (the derivatives of
different orders) measurements without the a priori information mentioned above. These methods
are focused on the simplest motion models (e.g., orbital) and neglect the possibility of constructing
several independent coordinate determination channels and the appearance of singular primary
measurement errors that devalue the information contained in indirect measurements (the deriva-
tives of radial velocity and bearing).

Note the method [29], which operates with derivatives up to the second order inclusive and forms
adaptive coordinate determination algorithms based on several parallel algorithms corresponding
to the invariants of object motion. However, according to the analysis, the explicit-form relations
and the corresponding algorithms obtained in [29] are dependent and redundant; they are also
focused on the uniform rectilinear motion model only.

This paper develops an indirect single-position coordinate determination method invariant with
respect to singular errors of a given class. (Such errors are represented as an appropriate linear
combination with unknown spectral coefficients in a given finite-dimensional functional space.)
Based on a complete set of invariants (for a wide class of motion models), the method forms a family
of independent quasi-optimal solutions and the resulting estimate of object motion parameters using
these solutions. The comparative computational gain is demonstrated.

According to [8, 11, 33, 37], invariants can effectively serve to solve a whole class of applied
target problems of single- and multi-position location and navigation based on indirect methods.
Here, we show the possibility of decentralization, parallelization, and reduction of computational
cost in processing measurements in various-type systems based on invariants of continuous groups
of Lie transformations (CGLT) and first integrals used to describe the motion of various objects.

2. PROBLEM STATEMENT

Consider an object whose motion in a separate observation area is described in the Cartesian
rectangular frame by some operator equation (e.g., in the vector-algebraic or vector-differential
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form)
G (t,ρ,η) = 0 ∀ t ∈ [0, T ] , (2.1)

where ρ = [x, y, z]T (x = x(t), y = y(t), z = z(t)) denotes the object’s coordinate vector and η is
the vector of unknown real-valued parameters.

Assume that the coordinates x, y, z are smooth and differential functions (a required number of
times) and the vector ρ is assigned the vector of spherical coordinates ς = [r, λ, ϕ]T, where r, λ,

and ϕ are inclined range, longitude, and latitude, respectively. Let X =
[
r(1), λ, ϕ

]T
be the vector

of direct measurements, where r(1) = dr/dt), and let Y be the vector of indirect measurements,
whose coordinates are the derivatives of r(1), λ, ϕ of different orders, necessary to implement a
version of the method developed below. We choose a grid (sliding window, further termed the
window for simplicity) {tn+i, i = −m,m}, where n ≥ m, m ∈ {1, 2, . . .}, tn+i ∈ [0, T ], and 2m+ 1

is the window size. Introducing the notation μ ∈
{
r(1), λ, ϕ

}
, we adopt the additive observation

equation
Hμ = μ+ sμ + ξμ, (2.2)

where

μ = [μn+i, i = −m,m]T, sμ = [sμ,n+i, i = −m,m]T,

ξμ = [ξμ,n+i, i = −m,m]T, μn+i = μ (tn+i),

sμ,n+i = sμ (tn+i), ξμ,n+i = ξμ (tn+i).

In (2.2), sμ(t) means the singular error

sμ(t) = DT
μΘμ(t), (2.3)

where

Dμ =
[
dμk, k = 0,K

]T
is the vector of unknown spectral coefficients and

Θμ(t) =
[
θμk(t), k = 0,K

]T
is the vector of given basis functions.

The function μ = μ(t) has the spectral representation

μ(t) = AT
μΨμ(t), (2.4)

where

Aμ =
[
aμb, b = 0, B

]T
is the vector of unknown coefficients and

Ψμ(t) =
[
ψμb(t), b = 0, B

]T
is the vector of given basis functions.

The vector ξμ consists of random errors with zero and the correlation matrix Kμ =
[kμ,n+i,n+j , i, j = −m,m].

Models (2.1)–(2.4) are widely used in various localization and navigation problems. Complex
trajectories (e.g., those of maneuvering objects) can be described by applying a separate model (2.1)
for each observation area. In particular, a very promising approach is to describe such trajectories
via the simplest groups of Lie transformations (e.g., shift, rotation, and stretching [8, 11, 31,
33–37]).

Based on the set of invariants of equation (2.1) (in particular, the first integrals of motion or the
invariants of CGLT), it is required to develop an indirect coordinate determination method con-
sidering (2.2)–(2.4) and the accepted constraints with the following features: the method involves
no state space expansion; the method is robust to the singular error; the method allows estimat-
ing the object’s motion parameters from the extended vector of direct and indirect measurements

Z =
[
XT,YT

]T
, whose coordinates are estimated with minimum posterior variances.
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3. THE PRINCIPLE OF DETERMINING MOTION PARAMETERS
BASED ON INVARIANTS

Let us associate with equation (2.1) a scalar invariant I = I (t,ρ,γI), where the vector γI

consists of some derivatives of the coordinates of the vector ρ. On the solutions ρ(t) and γI(t) of
equation (2.1), this invariant satisfies the condition

I (t,ρ(t),γI(t)) = C = const ∀ t ∈ [0, T ] . (3.1)

Passing to spherical coordinates in (3.1) gives

Q
(
t, ς(t),γQ(t)

)
= C = const ∀ t ∈ [0, T ] , (3.2)

where the vector γQ consists of some derivatives of the coordinates of the vector ς.

The way to find the invariants is entirely determined by the kind of equation (2.1).

We calculate the total derivative of the left- and right-hand sides of equation (3.2):

∂Q

∂t
+

∂Q

∂ς

(
dς

dt

)T

+
∂Q

∂γQ

(
dγQ

dt

)T

= 0 ∀ t ∈ [0, T ] . (3.3)

Expanding all derivatives in (3.3) yields the equation

W (t, ς,γW ) = 0 ∀ t ∈ [0, T ] , (3.4)

where the vector γW consists of all possible derivatives of r, λ, ϕ.

Solving this equation for r, we determine the inclined range (distance to the object):

r = W−1 (t,Z) . (3.5)

Associating with equation (2.1) the set of independent invariants Il = Il (t,ρ,γI), l = 1, L, by
analogy with (3.1)–(3.5), we obtain the set of formulas

r [l] = W−1
[l]

(
t,Z[l]

)
, l = 1, L. (3.6)

This set can be used in an adaptive version of the inclined range estimation procedure in order
to improve the accuracy of estimation considering measurement errors. For example, if for a fixed
time instant t, the vector Z[l] is estimated with an error characterized by zero mean the correlation
matrix KZ, then the variance of the inclined range estimate is given by

σ2
r[l] = HT

[l]KZ[l]H[l], l = 1, L, (3.7)

where the column vector H[l] consists of the partial derivatives of (3.6) with respect to the elements
of the vector Z[l] calculated on their mathematical expectations.

As an optimal version of the inclined range estimation procedure we select the one for which

l∗ = argmin
l

σ2
r[l], l∗ ∈ {1, 2, . . . , L} . (3.8)

The Cartesian coordinates of the object can be determined using the dependencies

x [l∗] = r [l∗] cosϕ cos λ, y [l∗] = r [l∗] cosϕ sin λ, z [l∗] = r [l∗] sinϕ, (3.9)

where the angular coordinates λ and ϕ are replaced by either direct measurements or their smoothed
values.
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Generally, we can use the set of probable models Gk (t,ρ,η) = 0, k = 0,K, for a given observa-
tion area instead of (2.1). In this case, the algorithm (3.7)–(3.9) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
r[k,l] = HT

[k,l]KZ[k,l]H[k,l], k = 1,K, l = 1, Lk,

[k∗, l∗] = argmin
[k,l]

σ2
r[k,l], k∗ ∈ {1, 2, . . . ,K} , l∗ ∈ {1, 2, . . . , Lk} ,

x [k∗, l∗] = r [k∗, l∗] cosϕ cos λ,

y [k∗, l∗] = r [k∗, l∗] cosϕ sin λ,

z [k∗, l∗] = r [k∗, l∗] sinϕ.

(3.10)

The algorithm (3.10) parallelizes the computational process considering the number of invariants
used and adapts the estimation procedure of the object motion parameters to the observation
conditions.

4. DESIGN AND USE OF INVARIANTS: SOME EXAMPLES

Consider a separate observation area in which the following general CGLT [32–34] corresponds
to equation (2.1):

Ta : ρ′ = f (a,ρ0,η0) ∀ a ∈ Δa ⊂ R1, (4.1)

where ρ′ = [x′, y′, z′]T, f (a,ρ0,η0) = [fx, fy, fz]
T, η0 is the vector of numerical parameters of the

group and a is a real-valued group parameter such that f (a0,ρ,η0) = ρ for a = a0, a0 ∈ Δa.

Model (4.1) describes the object’s trajectory; when treating the group parameter as a time-
varying function a = a (t,χ0), where χ0 is the vector of generally unknown numerical parameters,
we can describe the time law of motion along this trajectory. With the change of coordinates
ρ′ = ρ, ρ = ρ0, due to (2.1), it follows that ρ− f (a,ρ0,η0) = G (t,ρ,η) , η = [ρ0,η0,χ0]

T .

The invariants I = I (ρ,η0) of model (4.1), independent of the parameters t, ρ0, and χ0, are
found by solving the linear partial differential equation

XI (ρ,η0) = φx
∂I

∂x
+ φy

∂I

∂y
+ φz

∂I

∂z
= 0, (4.2)

where X = φx∂/∂x+ φy∂/∂y + φz∂/∂z denotes the infinitesimal CGLT operator. Its coordinates
are given by φx = ∂fx/∂a, φy = ∂fy/∂a, and φz = ∂fz/∂a at the point a = a0.

In view of (4.2), an extended operator and the corresponding partial differential equation are
constructed to find invariants considering the temporal nature of motion along the trajectory (4.1)
and various derivatives of the vector ρ; for details, see [8, 11, 31–34].

This method will be demonstrated on an example of a shift group. Let

Ta=t : ρ
′ = ρ+ η0t ∀ a = t ∈ Δa = [0, T ] ⊂ R1,

where η0 = V0 = [Vx0, Vy0, Vz0]
T is the velocity vector of an object moving straight and uniformly.

In this case, we have φx = Vx0, φy = Vy0, φz = Vz0, and two independent invariants, I[1] = xVy0−
yVx0 = xy(1) − yx(1) and I[2] = xVz0zVx0 = xz(1) − zx(1). In addition, due to (3.1), γI[1](t) = γI[1] =[
x(1), y(1)

]T
and γI[2](t) = γI[2] =

[
x(1), z(1)

]T
. Using (3.2) and straightforward but cumbersome

transformations, we obtain

Q[1]

(
t, ς(t),γQ[1](t)

)
= r2λ(1) cos2 ϕ,

Q[2]

(
t, ς(t),γQ[2](t)

)
= r2

(
ϕ(1) cos λ+ λ(1) sinλ sinϕ cosϕ

)
,
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where

γQ[1] =
[
ϕ(1)

]
and γQ[2] =

[
λ(1), ϕ(1)

]T
.

In view of (3.3) and (3.4), it follows that

W[1] = 2r(1)λ(1) + r
(
λ(2) − 2λ(1)ϕ(1) tanϕ

)
,

W[2] = 2r(1)ϕ(1) + r

(
ϕ(2) +

(
λ(1)

)2
sinϕ cosϕ

)
,

where

γW [1] =
[
r(1), λ(1), λ(2), ϕ(1)

]T
and γW [1] =

[
r(1), λ(1), ϕ(1), ϕ(2)

]T
.

Finally, concretizing (3.5) and (3.6) yields two independent formulas for the inclined range:

r [1] =
2r(1)λ(1) cosϕ

2λ(1)ϕ(1) sinϕ− λ(2) cosϕ
, (4.3)

r [2] = − 2r(1)ϕ(1)

ϕ(2) +
(
λ(1)

)2
sinϕ cosϕ

. (4.4)

In the special cases ϕ = ϕ(1) = ϕ(2) = 0 and λ = λ(1) = λ(2) = 0, the expressions (4.3) and (4.4)
directly imply the well-known ranging formulas

r [1] = −2r(1)λ(1)/λ(2), r [2] = −2r(1)ϕ(1)/ϕ(2).

(For example, see the differential-geometrical method [4].)

Other ranging formulas can be derived using three new invariants, I[3] = x(1) = Vx0, I[4] =

y(1) = Vy0, and I[5] = z(1) = Vz0. They lead to the independent ranging formulas

r [3] =
r(2) cosϕ− 2r(1)ϕ(1) sinϕ

ϕ(2) sinϕ+
[(
λ(1)

)2
+

(
ϕ(1)

)2]
cosϕ

, (4.5)

r [4] =
r(2) sinϕ+ 2r(1)ϕ(1) cosϕ(
ϕ(1)

)2
sinϕ− ϕ(2) cosϕ

, (4.6)

r [5] =
r(2)(

ϕ(1)
)2

+
(
λ(1)

)2
cos2 ϕ

. (4.7)

In contrast to [29], the set of formulas (4.3)–(4.7) is necessary and sufficient for constructing
a parallel independent adaptive ranging algorithm, and the resulting relations are written in a
compact (nonredundant) form.

Remark 1. There is no complete coincidence of the sets of measured parameters in all formu-
las (4.3)–(4.7). In view of (3.7)–(3.10), it is therefore possible to organize five independent channels
for range calculation and adaptation to variable observation conditions.

Remark 2. The longitude λ is not explicitly included in any of the formulas; hence, the constant
systematic errors in the measurements of the coordinate λ can be effectively dealt with. The
latitude ϕ explicitly figures in all the formulas.

Remark 3. For more complex motion models with general CGLT, all possible invariants corre-
sponding to the trajectory and the object’s motion law along this trajectory, as well as independent
expressions for determining the inclined range, can be found similar to the shift group.
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Remark 4. For a maneuvering object, it is necessary to use a compound model based on an
admissible set of a particular CGLT (e.g., shift, rotation, and stretching). An appropriate particular
CGLT in some observation area is chosen by solving the identification problem with minimizing
a decision function (e.g., the residual of the least squares method). Such an approach using the
rotation group was considered in [31]; the object trajectory was approximated by pieces of circles
of different radii.

If model (2.1) is some differential equation, then all possible invariants in the dynamic case
can be found within the well-known theory of group analysis [34–36]. In practice, however, it
often suffices to use particular invariants of motion, i.e., the so-called first integrals of the dif-
ferential equation. We will demonstrate this approach on an example of circular orbital motion:
G (t,ρ,η) = ρ(2) + η0R

−3
0 ρ = 0, where η = [R0, η0]

T and R0 and η0 are the radius and gravita-
tional parameter of the Earth, respectively. As is well known, the invariants (first integrals) of
this motion are I[1] = xy(1) − yx(1) and I[2] = xz(1) − zx(1), identical in form to the shift group

invariants discussed above. However, the derivatives x(1), y(1), and z(1) here are not constants
and the invariants I[3] = x(1) = Vx0, I[4] = y(1) = Vy0, and I[5] = z(1) = Vz0 used previously become
inapplicable. With this fact in mind, we accept only the expressions (4.3) and (4.4) as ranging
formulas in the dynamic case.

Remark 5. The single-position indirect method developed in this paper can be generalized to
the class of stochastic models, for which the application of classical invariants is often very limited.
At the same time, it is possible to use the so-called ε-invariants [37]. Within this approach, the
invariance condition holds approximately (with accuracy up to ε), and the coordinate determination
problem can be solved approximately as well.

5. CONSIDERATION OF FLUCTUATING MEASUREMENT ERRORS

We take an example of the shift group and the condition ϕ = ϕ(1) = ϕ(2) = 0 to demonstrate
the implementation of the algorithm (3.7), (3.8). Clearly, in this particular case, the entire set of
formulas (4.3)–(4.7) reduces to the two informative ones:

r [1] = −2r(1)λ(1)/λ(2), r [2] = −r(2)/
(
λ(1)

)2
.

Accordingly, we have two vectors of measured parameters: Z[1] =
[
r(1), λ(1), λ(2)

]T
and Z[2] =[

r(2), λ(1)
]T

. Let the matrices KZ[1] and KZ[2] be diagonal, i.e.,

KZ[1] = diag
[
σ2
r(1) , σ

2
λ(1) , σ

2
λ(2)

]
and KZ[2] = diag

[
σ2
r(2), σ

2
λ(1)

]
.

(With this supposition, the presentation below will be less cumbersome.) Due to x = r cos λ,
y = r sinλ, and (3.7), we find

σ2
r[1] = 4

(
λ(2)

)−2
{(

λ(1)
)2

σ2
r(1) +

(
r(1)

)2 [
σ2
λ(1) +

(
λ(1)/λ(2)

)2
σ2
λ(2)

]}
, (5.1)

σ2
r[2] =

(
λ(1)

)−4
[
σ2
r(2) + 4

(
r(2)

)2 (
λ(1)

)−4
σ2
λ(1)

]
. (5.2)

The priority is given to the ranging formula for which

l∗ = argmin
l

σ2
r[l], l∗ ∈ {1, 2} . (5.3)
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According to (5.1)–(5.3), the method involves derivatives up to the second order inclusive and
can be effectively applied only on smoothed measurements. In addition, the class of high-speed
objects is considered: the necessary increment of angular coordinates and radial velocity on a given
observation interval must be provided [29].

6. AN AUTO-COMPENSATION ALGORITHM FOR SMOOTHING
PRIMARY MEASUREMENTS

In view of (2.1)–(2.4), we consider an auto-compensation unbiased smoothing algorithm for

the parameter μ ∈
{
r(1), λ, ϕ

}
and its derivatives μ(q), q ∈ {0, 1, 2}, at a point tn using the window

{tn+i, i = −m,m}. Let us rest on the general approach to estimating the values of linear functionals;
for details, see [38, 39].

Within this approach, the estimate μ(q)∗ of μ(q) has the form

μ(q)∗ = PT
μqHμ, (6.1)

where Pμq = [pμq,n+i, i = −m,m]T is the vector of unknown weight coefficients assigned by mini-
mizing the variance σ2

μq of the estimate μ(q)∗.

This estimate belongs to the linear class; therefore,

σ2
μq = PT

μqKμPμq. (6.2)

Furthermore, we require the unbiasedness conditions of the estimate (μ(q) −PT
μqμ = 0) and its

invariance with respect to the singular error (PT
μqsμ = 0). The constrained optimization problem

is solved using Lagrange’s multiplier method with the decision function

J
(
Pμq, ζμq,ωμq

)
= PT

μqKμPμq + ζTμqΘ
T
μPμq +

[(
ΨT

μ

)(q)
−PT

μqΨμ

]
ωμq, (6.3)

where ζμq andωμq are the column vectors of the Lagrange multipliers, Θμ = [θμk(tn+i), i = −m,m,

k = 0,K ] is the basis matrix of the singular error, and Ψμ =
[
ψμb (tn+i) , i = −m,m, b = 0, B

]
is

the basis matrix of the parameter μ = μ(t).

The vector Pμq minimizing σ2
μq subject to the unbiasedness and invariance conditions has the

form

Pμq = ΛμK
−1
μ Ψμ

(
ΨT

μΛμK
−1
μ Ψμ

)−1
Ψ(q)

μn , (6.4)

where Λμ = E2m+1 −K−1
μ Θμ

(
ΘT

μK
−1
μ Θμ

)−1
ΘT

μ , E2m+1 is an identity matrix of dimensions

(2m+ 1)× (2m+ 1), and Ψ
(q)
μn = dqΨμ(t)/dt

q|t=tn
.

The variance of the estimate μ(q)∗ is given by

σ2
μq =

(
Ψ(q)

μn

)T [(
K−1

μ Ψμ

)T
(Λμ)

TΨμ

]−1

Hμ

(
ΨT

μΛμK
−1
μ Ψμ

)−1
Ψ(q)

μn , (6.5)

where

Hμ =
(
K−1

μ Ψμ

)T
(Λμ)

TKμΛμK
−1
μ Ψμ.

Clearly, the methodological error due to neglecting the tail of the series (2.4) has the mathe-
matical expectation

εμq = Δ(q)
μn −PT

μqΔμn, (6.6)
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where Δμ = Δμ(t) is the series tail and Δ
(q)
μn denotes its qth derivative at the point t = tn, Δμn =

[Δμ (tn+i) , i = −m,m]T.

According to [38, p. 62], with increasing the number of spectral coefficients in the singular
error model (2.3), the algorithm (6.1)–(6.6) reduces computational cost by 47% compared to the
traditional extended least-squares method. As a result, the smoothing problem is solved faster.

Considering (6.1)–(6.6), we can construct the desired estimates of the object motion parameters
invariant to singular measurement errors. For example, formulas (4.3) and (4.4) yield the following
robust estimates of the inclined range for two invariants:

r [1] =
2
(
PT

r1Hr

) (
PT

λ1Hλ

)
cos

(
PT

ϕ0Hϕ

)
2
(
PT

λ1Hλ

) (
PT

ϕ1Hϕ

)
sin

(
PT

ϕ0Hϕ

)
−

(
PT

λ2Hλ

)
cos

(
PT
ϕ0Hϕ

) , (6.7)

r [2] = −
2
(
PT

r1Hr

) (
PT

ϕ1Hϕ

)
(
PT
ϕ2Hϕ

)
+

(
PT

λ1Hλ

)2
sin

(
PT

ϕ0Hϕ

)
cos

(
PT

ϕ0Hϕ

) . (6.8)

The ranges for the variants (4.5)–(4.7) and the Cartesian coordinates (3.9) of the observed object
are determined by analogy with (6.7) and (6.8).

According to the results of computational experiments [38, 39], the auto-compensation smooth-
ing algorithm demonstrates high effectiveness in anomalous measurement conditions. Hence, it is
possible to form stable estimates of the derivatives of the radial velocity and angular coordinates
necessary for the successful application of the single-position indirect coordinate determination
method. Simulation results for the adaptive algorithm (3.7), (3.8) in the case of rectilinear uniform
object motion were presented in [29]. They show that the method is applicable to high-precision
measurements, while the reliability of coordinate determination significantly depends on the ob-
ject’s dynamics and observation conditions.

7. CONCLUSIONS

The method developed above considerably expands the scope of quasi-optimal indirect fast
estimation methods robust to singular measurement errors and observation conditions of high-
speed objects for their single-position coordinate determination. This method can be effectively
used as a tool for intelligent and analytical improvement of the existing and next-generation single-
position systems of active and passive location and navigation, independently or in combination
with traditional statistical methods (e.g., least squares, maximum likelihood, maximum posterior
probability density, and dynamic filtering).

The method has limitations on the classes of single-position systems in terms of measurement
accuracy, observation conditions, and the types of objects to be tracked.
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